Model-Free Fractional-Order Sliding Mode Control of Electric Drive System Based on Nonlinear Disturbance Observer

Author:

Yu Yingxin,Liu XudongORCID

Abstract

A model-free fractional-order sliding mode control (MFFOSMC) method based on a non-linear disturbance observer is proposed for the electric drive system in this paper. Firstly, the ultra-local model is established by using the mathematical model of electric drive system under parameter perturbation. Then, aiming at reducing the chattering of the sliding mode controller and improving the transient response, a model-free fractional-order sliding mode controller is designed based on fractional-order theory. Next, considering that the traditional sliding mode control can only suppress matched disturbance and that it is sensitive to mismatched disturbance, a non-linear disturbance observer is used to estimate disturbance, and the estimated variables are used in the design of a sliding mode surface to improve the tracking accuracy of the system. Finally, the experiment is completed on an asynchronous motor drive platform. Compared with the model-free integer-order sliding mode control (MFIOSMC), the results show that the proposed method has good dynamic response and strong robustness. Meanwhile, the proposed method reduces the dependence on mathematical models.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Science and Technology Support Plan for Youth Innovation of Universities in Shandong Province

Publisher

MDPI AG

Subject

Statistics and Probability,Statistical and Nonlinear Physics,Analysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3