Abstract
Ceramics are commonly used as high-temperature structural materials which are easy to fracture because of the propagation of thermal shock cracks. Characterizing and controlling crack propagation are significant for the improvement of the thermal shock resistance of ceramics. However, observing crack morphology, based on macro and SEM images, costs much time and potentially includes subjective factors. In addition, complex cracks cannot be counted and will be simplified or omitted. Fractals are suitable to describe complex and inhomogeneous structures, and the multifractal spectrum describes this complexity and heterogeneity in more detail. This paper proposes a crack characterization method based on the multifractal spectrum. After thermal shocks, the multifractal spectrum of alumina ceramics was obtained, and the crack fractal features were extracted. Then, a deep learning method was employed to extract features and automatically classify ceramic crack materials with different strengths, with a recognition accuracy of 87.5%.
Funder
National Natural Science Foundation of China
National Key Research and Development Program of China
Science Foundation of the National Key Laboratory of Science and Technology on Advanced Composites in Special Environments
Subject
Statistics and Probability,Statistical and Nonlinear Physics,Analysis
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献