Fractal Complexity of a New Biparametric Family of Fourth Optimal Order Based on the Ermakov–Kalitkin Scheme

Author:

Cordero Alicia1ORCID,Rojas-Hiciano Renso V.2ORCID,Torregrosa Juan R.1ORCID,Vassileva Maria P.3ORCID

Affiliation:

1. Instituto de Matemática Multidisciplinar, Universitat Politècnica de València, Camino de Vera, s/n, 46022 Valencia, Spain

2. Escuela de Ciencias Naturales y Exactas, Pontificia Universidad Católica Madre y Maestra, Autopista Duarte Km 1.5, Santiago De Los Caballeros 51000, Dominican Republic

3. Instituto Tecnológico de Santo Domingo (INTEC), Av. Los Procéres, Santo Domingo 10602, Dominican Republic

Abstract

In this paper, we generalize the scheme proposed by Ermakov and Kalitkin and present a class of two-parameter fourth-order optimal methods, which we call Ermakov’s Hyperfamily. It is a substantial improvement of the classical Newton’s method because it optimizes one that extends the regions of convergence and is very stable. Another novelty is that it is a class containing as particular cases some classical methods, such as King’s family. From this class, we generate a new uniparametric family, which we call the KLAM, containing the classical Ostrowski and Chun, whose efficiency, stability, and optimality has been proven but also new methods that in many cases outperform these mentioned, as we prove. We demonstrate that it is of a fourth order of convergence, as well as being computationally efficienct. A dynamical study is performed allowing us to choose methods with good stability properties and to avoid chaotic behavior, implicit in the fractal structure defined by the Julia set in the related dynamic planes. Some numerical tests are presented to confirm the theoretical results and to compare the proposed methods with other known methods.

Publisher

MDPI AG

Subject

Statistics and Probability,Statistical and Nonlinear Physics,Analysis

Reference16 articles.

1. Ortega, J.M., and Rheinboldt, W.G. (1970). Iterative Solutions of Nonlinear Equations in Several Variables, Academic Press.

2. Traub, J.F. (1982). Iterative Methods for the Solution of Equation, Chelsea Publishing Company.

3. The optimal step and regularization for Newton’s method;Ermakov;USSR Comput. Math. Math. Phys.,1981

4. Chicharro, F. (2017). Análisis dinámico y aplicaciones de métodos iterativos de resolución de ecuaciones no lineales. [Ph.D. Thesis, Universitat Politècnica de València]. Available online: https://riunet.upv.es/bitstream/handle/10251/83582/Chicharro.

5. Amorós, C. (2020). Estudio Sobre Convergencia y Dinámica de los Métodos de Newton, Stirling y Alto Orden. [Ph.D. Thesis, Universidad Internacional de la Rioja]. Available online: https://reunir.unir.net/bitstream/handle/123456789/10259/TesisCristinaAmorosCanet.pdf?sequence=3.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3