Abstract
The presence of disturbances in practical control engineering applications is unavoidable. At the same time, they drive the closed-loop system’s response away from the desired behavior. For this reason, the attenuation of disturbance effects is a primary goal of the control loop. Fractional-order controllers have now been researched intensively in terms of improving the closed-loop results and robustness of the control system, compared to the standard integer-order controllers. In this study, a novel tuning method for fractional-order controllers is developed. The tuning is based on improving the disturbance attenuation of periodic disturbances with an estimated frequency. For this, the reference–to–disturbance ratio is used as a quantitative measure of the control system’s ability to reject disturbances. Numerical examples are included to justify the approach, quantify the advantages and demonstrate the robustness. The simulation results provide for a validation of the proposed tuning method.
Funder
Unitatea Executiva Pentru Finantarea Invatamantului Superior a Cercetarii Dezvoltarii si Inovarii
Special Research fund of Ghent University
Subject
Statistics and Probability,Statistical and Nonlinear Physics,Analysis
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献