Author:
Angstmann Christopher N.,Henry Bruce I.,McGann Anna V.
Abstract
The introduction of fractional-order derivatives to epidemiological compartment models, such as SIR models, has attracted much attention. When this introduction is done in an ad hoc manner, it is difficult to reconcile parameters in the resulting fractional-order equations with the dynamics of individuals. This issue is circumvented by deriving fractional-order models from an underlying stochastic process. Here, we derive a fractional-order infectivity and recovery Susceptible Infectious Recovered (SIR) model from the stochastic process of a continuous-time random walk (CTRW) that incorporates a time-since-infection dependence on both the infectivity and the recovery of the population. By considering a power-law dependence in the infectivity and recovery, fractional-order derivatives appear in the generalised master equations that govern the evolution of the SIR populations. Under the appropriate limits, this fractional-order infectivity and recovery model reduces to both the standard SIR model and the fractional recovery SIR model.
Funder
Australian Research Council
Subject
Statistics and Probability,Statistical and Nonlinear Physics,Analysis
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献