Study on the Dynamic Stability and Spectral Characteristics of a Toppling Dangerous Rock Mass under Seismic Excitation

Author:

Wang Linfeng1ORCID,Zhang Jixu1ORCID,Huang Xiaoming2ORCID,Tan Guojin3ORCID

Affiliation:

1. Key Laboratory of Geological Hazards Mitigation for Mountainous Highway and Waterway, Chongqing Jiaotong University, Chongqing 400074, China

2. School of Transportation, Southeast University, Nanjing 211189, China

3. College of Transportation, Jilin University, Changchun 130012, China

Abstract

To evaluate the dynamic stability of dangerous rock masses under seismic excitation more reasonably, a mass viscoelasticity model was adopted to simulate the two main controlling surfaces of a toppling dangerous rock mass. Based on the principles of structural dynamics, a dynamic response analysis model and motion equations were established for toppling dangerous rock masses. The Newmark-β method was utilized to establish a calculation method for the dynamic stability coefficient of a toppling dangerous rock mass. This method was applied to the WY2 dangerous rock mass developed in a steep cliff zone in Luoyi Village, and the dynamic stability coefficient time history was calculated. Subsequently, the acceleration response signals of the dangerous rock mass in different directions were analyzed using wavelet packet transform. The results show that the sum of the energy proportions of the first to third frequency bands in the n1 and s2 directions exceeded 95%. This suggests that the n1 and s2 directions of the WY2 dangerous rock mass suffered the initial damage under bidirectional seismic actions. Finally, the marginal spectra variations of the acceleration response signals in different directions were analyzed based on the HHT. The results show that the seismic energy in the n1 and s2 directions of the dangerous rock mass was found to be the most significant under seismic loading, indicating that the rock mass experienced the most severe damage along these two directions. This reveals that the failure mode of the dangerous rock mass is inclined toppling, consistent with the results of wavelet packet analysis.

Funder

National Key Research and Development Program of China

Joint Funds of the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3