Energetic Performance of Natural Building Materials: Numerical Simulation and Experimental Evaluation

Author:

Mastino Costantino Carlo1ORCID,Concu Giovanna1,Frattolillo Andrea1ORCID

Affiliation:

1. Department of Civil and Environmental Engineering and Architecture, University of Cagliari, 09123 Cagliari, Italy

Abstract

The current goal of the European Commission, which aims to reduce CO2 by 90% compared to values estimated in 1980, and the ever-increasing sensitivity to environmental sustainability, fully involve the construction sector, which, according to the OECD (Organization for Economic Co-Operation and Development) is responsible for over one-third of the world’s energy requirement. In this frame, numerous researchers and companies are focusing on ecologically sustainable building materials, to be used in new and existing buildings, that are able to simultaneously fulfill the constructive function and improve the energy behavior of the building envelope. The goal of the present paper is the analysis of the energy performance of some innovative locally produced natural building materials (timber, sheep wool, rammed earth, lime-based plaster, natural fibers) used in multilayer vertical closures, compared to that of more common building materials (bricks, concrete, synthetic insulation). First, the physical-mechanical characterization of the local natural materials was carried out, then the model of a building was implemented, whose energetic performance was simulated by varying the type of stratigraphy of the walls, including the use of both innovative and common materials. The building chosen for the simulation consists of one of the BESTEST ANSI/ASHRAE reported in the 140-2017 standard using the climatic data of the Mediterranean area. The results of the simulation have been presented and discussed.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3