Petrophysical and Geochemical Investigation-Based Methodology for Analysis of the Multilithology of the Permian Longtan Formation in Southeastern Sichuan Basin, SW China

Author:

Zhang Shengqi1,Liu Jun1ORCID,Li Li2,Kassabi Nadhem3,Hamdi Essaieb3

Affiliation:

1. Key Laboratory of Deep Underground Science and Engineering (Ministry of Education), Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu 610065, China

2. College of Architecture and Environment, Sichuan University, Chengdu 610065, China

3. Geotechnical Engineering and Georisks Laboratory (LR14ES03), National Engineering School at Tunis, Université Tunis El Manar, Tunis 1068, Tunisia

Abstract

Against the backdrop of the national strategic goals of carbon peaking and carbon neutrality, the imperative for China’s low-carbon new energy transformation is evident. Emerging as an efficient and clean new energy source, the coal-based “three gases” (coalbed methane, tight sandstone gas, and shale gas) have gained prominence. Nevertheless, the current exploration of the coal-based “three gases” is limited to individual reservoirs, posing challenges to achieving overall extraction efficiency. The primary obstacle lies in the conspicuous disparities in gas content among different reservoirs, with the causes of such disparities remaining elusive. To address this issue, this study focused on the Permian Longtan Formation (coal, shale, and tight sandstone) in the southeastern Sichuan Basin. Through a comparative analysis of the mineral composition, organic geochemical features, and pore structure characteristics, this study aimed to delineate reservoir variations and establish a foundation for the simultaneous exploration and exploitation of the coal-based “three gases”. The research findings revealed that the differences in reservoir characteristics account for the variations in gas content among coal, shale, and tight sandstone. The mineral composition of the rock formations in the study area primarily consists of quartz, feldspar, clay minerals, pyrite, calcite, and dolomite. By comparison, the coal samples from the four major coal seams in the study area exhibited relatively large pore sizes, which are favorable for gas accumulation.

Funder

National Key Research and Development Program of China

the National Natural Science Foundation of China

Natural Science Foundation of Chongqing, China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3