Combined MIMO Deep Learning Method for ACOPF with High Wind Power Integration

Author:

Unlu Altan1ORCID,Peña Malaquias2ORCID

Affiliation:

1. Department of Electrical & Computer Engineering, University of Connecticut, Storrs, CT 06268, USA

2. Department of Civil & Environmental Engineering, University of Connecticut, Storrs, CT 06268, USA

Abstract

The higher penetration of renewable energy sources in current and future power grids requires effective optimization models to solve economic dispatch (ED) and optimal power flow (OPF) problems. Data-driven optimization models have shown promising results compared to classical algorithms because they can address complex and computationally demanding problems and obtain the most cost-effective solution for dispatching generators. This study compares the forecast performance of selected data-driven models using the modified IEEE 39 benchmark system with high penetration of wind power generation. The active and reactive power load data of each bus are generated using Monte Carlo simulations, and synthetic wind power data are generated by utilizing a physical wind turbine model and wind speed samples withdrawn from a Weibull distribution. The objective is to design and evaluate an enhanced deep learning approach for the nonlinear, nonconvex alternating current optimal power flow (ACOPF) problem. The study attempts to establish relationships between loads, generators, and bus outcomes, utilizing a multiple-input, multiple-output (MIMO) workflow. Specifically, the study compares the forecast error reduction of convolutional neural networks (CNNs), deep feed-forward neural networks (DFFNNs), combined/hybrid CNN-DFFNN models, and the transfer learning (TL) approach. The results indicate that the proposed combined model outperforms the CNN, hybrid CNN-DFFNN, and TL models by a small margin and the DFFNN by a large margin.

Funder

Eversource Energy Center

Publisher

MDPI AG

Reference50 articles.

1. Zhong, J. (2018). Power System Economic and Market Operations, CRC Press.

2. Contribution to the economic dispatch problem;Carpentier;Bull. Soc. Fr. Electr.,1962

3. History of optimal power flow and formulations;Cain;Fed. Energy Regul. Comm.,2012

4. A dynamic piecewise linear model for DC transmission losses in optimal scheduling problems;Diniz;IEEE Trans. Power Syst.,2010

5. Convex relaxation of optimal power flow—Part I: Formulations and equivalence;Low;IEEE Trans. Control Netw. Syst.,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3