A Distributed Harmonic Mitigation Strategy Based on Dynamic Points Incentive of Blockchain Communities

Author:

Wang Lei1,Zhou Wen1,Su Can1,Fan Jiawen2,Kong Weikuo2,Li Pan2ORCID

Affiliation:

1. State Grid Hebei Electric Power Research Institute, Shijiazhuang 050021, China

2. School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China

Abstract

With the high proportion of renewable energy sources and power electronic devices accessed in the distribution network, the harmonic pollution problem has become increasingly serious. The traditional centralized harmonic mitigation strategy has difficulty in effectively dealing with these scattered and random harmonics. Therefore, a distributed harmonic mitigation strategy based on the dynamic points incentive of blockchain communities is proposed in this paper. Firstly, a comprehensive voltage sensitivity partitioning method with harmonic weight differentiation is proposed to realize the reasonable partitioning of each control node and controlled node in the distribution network concerning variability in harmonic components and their distribution. Then, a harmonic mitigation strategy based on the dynamic integral excitation of self-learning algorithms is constructed to promote self-organized optimization and active distributed coordinated control of mitigation devices. The strategy ensures that the total harmonic voltage distortion rate of each node meets the requirements by adjusting the partitioned collaboration to realize optimal harmonic mitigation. By setting optimized partitions in different scenarios and conducting simulation verification, the results demonstrate the effectiveness of the strategy in this paper. It stimulates synergy between devices through a dynamic incentive mechanism and significantly reduces the total harmonic voltage distortion rate across various test scenarios, reflecting the adaptability of the harmonic mitigation method presented.

Funder

Science and Technology Project of State Grid Hebei Electric Power Co., Ltd.

National Nature Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3