Experimental Studies of the Machinability of SiCp/Al with Different Volume Fractions under Ultrasonic-Assisted Grinding

Author:

Hu Chen123,Zhu Yongwei1,Fan Ruoxun2ORCID

Affiliation:

1. College of Mechanical Engineering, Yangzhou University, Yangzhou 225127, China

2. College of Transportation Engineering, Yangzhou Polytechnic Institute, Yangzhou 225127, China

3. JITRI Institute of Precision Manufacturing, Nanjing 211800, China

Abstract

High-volume fraction silicon carbide particle-reinforced aluminum (SiCp/Al) has a promising application for its high specific strength, wear resistance, and thermal conductivity. However, SiCp/Al components with a high-volume fraction are prone to poor surface quality and defects such as fractures, cracks, and micro-pits. It has been reported that ultrasonic-assisted grinding machining (UAG) helps to improve the quality of SiCp/Al machined surfaces. However, the differences between SiCp/Al with different volume fractions obtained by UAG machining are not clear. Therefore, a comparative study of surface roughness, morphology, and cutting force was carried out by UAG machining on SiCp/Al samples with volume fractions of 45% and 60%. Compared to the 45% volume fraction SiCp/Al, the 60% volume fraction SiCp/Al has a higher cutting force and roughness under the same machining parameters. In addition, experiments have shown that cutting forces and surface roughness can be reduced by increasing the tool speed or decreasing the feed rate. UAG machining with an ultrasonic amplitude within 4 μm can also reduce cutting forces and surface roughness. However, more than 6 μm ultrasonic amplitude may lead to an increase in roughness. This study contributes to reasonable parameter settings in ultrasonically-assisted grinding of SiCp/Al with different volume fractions.

Funder

National Natural Science Foundation of China

Jiangsu Province Postgraduate Highlights Study Plan Project of the JITRI Institute Basic Science Research Project of Jiangsu Higher Education

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3