Optimization of Resveratrol Used as a Scaffold to Design Histone Deacetylase (HDAC-1 and HDAC-2) Inhibitors

Author:

Urias Beatriz SilvaORCID,Pavan Aline Renata,Albuquerque Gabriela Ribeiro,Prokopczyk Igor MucciloORCID,Alves Tânia Mara Ferreira,de Melo Thais Regina Ferreira,Sartori Geraldo Rodrigues,da Silva João Hermínio Martins,Chin Chung ManORCID,Santos Jean Leandro DosORCID

Abstract

Histone deacetylases (HDAC) are epigenetic enzymes responsible for repressing gene expression through the deacetylation of histone lysine residues. Therefore, inhibition of HDACs has become an interesting approach for the treatment of several diseases, including cancer, hematology, neurodegenerative, immune diseases, bacterial infections, and more. Resveratrol (RVT) has pleiotropic effects, including pan-inhibition of HDAC isoforms; however, its ability to interfere with membranes requires additional optimization to eliminate nonspecific and off-target effects. Thus, to explore RVT as a scaffold, we designed a series of novel HDAC-1 and -2 inhibitors containing the 2-aminobenzamide subunit. Using molecular modeling, all compounds, except unsaturated compounds (4) and (7), exhibited a similar mode of interaction at the active sites of HDAC 1 and 2. The docking score values obtained from the study ranged from −12.780 to −10.967 Kcal/mol. All compounds were synthesized, with overall yields ranging from 33% to 67.3%. In an initial screening, compounds (4), (5), (7), and (20)–(26), showed enzymatic inhibitory effects ranging from 1 to 96% and 6 to 93% against HDAC-1 and HDAC-2, respectively. Compound (5), the most promising HDAC inhibitor in this series, was selected for IC50 assays, resulting in IC50 values of 0.44 µM and 0.37 µM against HDAC-1 and HDAC-2, respectively. In a panel of selectivity against HDACs 3–11, compound (5) presented selectivity towards Class I, mainly HDAC-1, 2, and 3. All compounds exhibited suitable physicochemical and ADMET properties as determined using in silico simulations. In conclusion, the optimization of the RVT structure allows the design of selective HDAC inhibitors, mainly targeting HDAC-1 and HDAC-2 isoforms.

Funder

São Paulo Research Foundation

Coordenação de Aperfeicoamento de Pessoal de Nível Superior

Pró-Reitoria de Pesquisa

Publisher

MDPI AG

Subject

Drug Discovery,Pharmaceutical Science,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3