Tillage-Induced Fragmentation of Large Soil Macroaggregates Increases Nitrogen Leaching in a Subtropical Karst Region

Author:

Xiao Shuangshuang,Liu Xiajiao,Zhang WeiORCID,Ye Yingying,Chen Wurong,Wang KelinORCID

Abstract

Tillage leads to rapid loss of soil nitrogen (N) over a short period of time in karst areas. N leaching is the primary pathway of soil N loss and therefore is key to understanding the mechanisms of N loss induced by tillage. However, the factors affecting N leaching under tillage are not fully understood. Effects of tillage at various frequencies on leached N were examined in a one-year in situ simulation experiment using five tillage treatments: no tillage (T0), semiannual tillage (T1), and tillage every four months (T2), two months (T3), and monthly (T4). Concentration and amount of leached N had peaks in dry–rewetting months. Tillage significantly increased total amounts of leached N during the one-year experiment, and the largest amount of leached N was under tillage at the highest frequency. The primary form of N in leachate was NO3¯ (88.49–91.11%), followed by DON (7.80–9.87%), and then NH4+ with the lowest amount (1.09–2.10%). Tillage increased the amount of leached NO3¯ and DON, but had no significant effect on leached NH4+. Additionally, the amount of leached N had significantly negative correlations with 5–8 mm soil aggregate, NO3¯, DON, and sand content, and positive correlations with 2–5 and 0.25–2 mm. Soil 5–8 mm aggregate and DON were the main factors explaining the variation in leached N according to the RDA analysis. Tillage increased the breakdown of large aggregates, appearing to have increased the mineralization of organic matter, which resulted in increased N leaching. Our results emphasize the importance of reducing or eliminating physical disturbance indued by tillage and maintenance of large soil aggregates for decreasing N leachate in lime soil of karst regions.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Ecology,Global and Planetary Change

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3