Global Climate Change Effects on Soil Microbial Biomass Stoichiometry in Alpine Ecosystems

Author:

Chen Luyun,Gao Yongheng

Abstract

Alpine ecosystems are sensitive to global climate change-factors, which directly or indirectly affect the soil microbial biomass stoichiometry. In this paper, we have compared the soil microbial biomass stoichiometry ratios of alpine ecosystems using the global average values. In the comparison, the responses and mechanisms of soil microbial biomass stoichiometry to nitrogen deposition, altered precipitation, warming, and elevated atmospheric carbon dioxide (CO2) concentration in the alpine ecosystem were considered. The alpine ecosystem has a higher soil microbial-biomass-carbon-to-nitrogen ratio (MBC:MBN) than the global average. In contrast, the soil microbial-biomass-nitrogen-to-phosphorus (MBN:MBP) and carbon-to-phosphorus ratios (MBC:MBP) varied considerably in different types of alpine ecosystems. When compared with the global average values of these ratios, no uniform pattern was found. In response to the increase in nitrogen (N) deposition, on the one hand, microbes will adopt strategies to regulate extracellular enzyme synthesis and excrete excess elements to maintain stoichiometric balance. On the other hand, microbes may also alter their stoichiometry by storing excess N in their bodies to adapt to the increased N in the environment. Thus, a decrease in MBC:MBN and an increase in MBN:MBP are observed. In addition, N deposition directly and indirectly affects the soil fungal-to-bacterial ratio (F:B), which in turn changes the soil microbial biomass stoichiometry. For warming, there is no clear pattern in the response of soil microbial biomass stoichiometry in alpine ecosystems. The results show diverse decreasing, increasing, and unchanging patterns. Under reduced precipitation, microbial communities in alpine ecosystems typically shift to a fungal dominance. The latter community supports a greater carbon-to-nitrogen ratio (C:N) and thus an increased soil MBC:MBN. However, increased precipitation enhances N effectiveness and exacerbates the leaching of dissolved organic carbon (DOC) and phosphorus (P) from alpine ecosystem soils. As a result, a decrease in the soil MBC:MBN and an increase in the soil MBN:MBP are evident. Elevated atmospheric CO2 usually has little effect on the soil MBC:MBN in alpine ecosystems, mainly because of two reasons. These are: (i) N is the main limiting factor in alpine ecosystems, and (ii) alpine ecosystems accumulate higher soil organic carbon (SOC) and microbes and preferentially decompose “old” carbon (C) stocks. The response of soil microbial stoichiometry to global climate change factors in alpine ecosystems is diverse, and the impact pathways are complex. Future studies need to focus on the combined effects of multiple global climate change factors on microbial stoichiometry and the mechanism of microbial stoichiometric balance.

Funder

the Key Research and Development Program of Sichuan Province of China

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Ecology,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3