Artificial Neural Networking (ANN) Model for Drag Coefficient Optimization for Various Obstacles

Author:

Rehman Khalil Ur,Çolak Andaç BaturORCID,Shatanawi WasfiORCID

Abstract

For various obstacles in the path of a flowing liquid stream, an artificial neural networking (ANN) model is constructed to study the hydrodynamic force depending on the object. The multilayer perceptron (MLP), back propagation (BP), and feed-forward (FF) network models were employed to create the ANN model, which has a high prediction accuracy and a strong structure. To be more specific, circular-, octagon-, hexagon-, square-, and triangular-shaped cylinders are installed in a rectangular channel. The fluid is flowing from the left wall of the channel by following two velocity profiles explicitly linear velocity and parabolic velocity. The no-slip condition is maintained on the channel upper and bottom walls. The Neumann condition is applied to the outlet. The entire physical design is mathematically regulated using flow equations. The result is presented using the finite element approach, with the LBB-stable finite element pair and a hybrid meshing scheme. The drag coefficient values are calculated by doing line integration around installed obstructions for both linear and parabolic profiles. The values of the drag coefficient are predicted with high accuracy by developing an ANN model toward various obstacles.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3