Cu2−xS and Cu2−xSe Alloys: Investigating the Influence of Ag, Zn, and Ni Doping on Structure and Transport Behavior

Author:

Mikuła Andrzej1ORCID,Kurek Tomasz1ORCID,Kożusznik Miłosz1ORCID,Nieroda Paweł1ORCID

Affiliation:

1. Faculty of Materials Science and Ceramics, AGH University of Krakow, al. Mickiewicza 30, 30-059 Krakow, Poland

Abstract

Cu2−xS and Cu2−xSe (0 ≤ x ≤ 0.2) alloys stand out as highly promising materials for thermoelectric applications, owing to the phonon–liquid electron–crystal (PLEC) convention. In this study, we undertake a comprehensive investigation to reassess the synthesis conditions, with a focus on achieving pure-phased systems through a direct reaction between elements at elevated temperatures. Simultaneously, we present experimental evidence showcasing the feasibility of doping these systems with Ag, Ni, and Zn. The study demonstrates that obtaining single-phased systems requires multi-step processes, and the dissolution of chosen impurities appears doubtful, as evidenced by numerous foreign phase segregations. Additionally, it is revealed that the partial dissolution of individual impurities deteriorates the operational parameters of these chalcogenides. For the optimal Cu1.97S composition, it reduces the thermoelectric figure-of-merit ZT from 1.5 to approximately 1.0, 0.65, and 0.85 for Ag-, Ni-, and Zn-doped systems, respectively, while marginally improving their stability. For metal-like Cu1.8Se, the ZT parameter remains at a low level, ranging between 0.09 and 0.15, showing slight destabilization during subsequent operating cycles. The article concludes with an in-depth analysis of the basic thermoelectric performance exhibited by these doped systems, contributing valuable insights into the potential enhancements and applications of Cu2−xS and Cu2−xSe alloys in the field of thermoelectric materials.

Funder

AGH University of Krakow

Polish Ministry of Education and Science

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3