Risk Analysis of Chemical Plant Explosion Accidents Based on Bayesian Network

Author:

Zhu RongchenORCID,Li Xin,Hu Xiaofeng,Hu Deshui

Abstract

Many chemical plant explosion accidents occur along with the development of the chemical industry. Meanwhile, the interaction and influence of various factors significantly increase the uncertainty of the evolution process of such accidents. This paper presents a framework to dynamically evaluate chemical plant explosion accidents. We propose twelve nodes to represent accident evolution and establish a Bayesian network model for chemical plant explosion accidents, combining historical data with expert experience to support the prevention, management, and real-time warning. Hypothetical scenarios and catastrophic explosion scenarios were analyzed by setting different combinations of states for nodes. Moreover, the impacts of factors such as factory type, material form, accident equipment, the emergency response on casualty and property loss are evaluated. We find that sensitivity of property loss and casualties to factory type and ongoing work are less significant; the equipment factors result in more casualties than that from personnel factors; the impact of emergency response on the accident results is significant; equipment safety management and personnel safety training are the most important measures to prevent chemical plant explosion risks.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3