Three Adhesive Recipes Based on Magnesium Lignosulfonate, Used to Manufacture Particleboards with Low Formaldehyde Emissions and Good Mechanical Properties

Author:

Balea (Paul) Gabriela,Lunguleasa AurelORCID,Zeleniuc Octavia,Coşereanu CameliaORCID

Abstract

Adhesives represent an important part in the wood-based composite production, and taking into account their impact on the environment and human health, it is a challenge to find suitable natural adhesives. Starting from the current concerns of finding bio-adhesives, this paper aims to use magnesium lignosulfonate in three adhesive recipes for particleboard manufacturing. First, the adhesive recipes were established, using oxygenated water to oxidize magnesium lignosulfonate (Recipe 1) and adding 3% polymeric diphenylmethane diisocyanate (pMDI) crosslinker (Recipe 2) and a mixture of 2% polymeric diphenylmethane diisocyanate with 15% glucose (Recipe 3). The particleboard manufacturing technology included operations for sorting particles and adhesive recipes, pressing the mats, and testing the mechanical strengths and formaldehyde emissions. The standardized testing methodology for formaldehyde emissions used in the research was the method of gas analysis. Tests to determine the resistance to static bending and internal cohesion for all types of boards and recipes were also conducted. The average values of static bending strengths of 0.1 N/mm2, 0.38 N/mm2, and 0.41 N/mm2 were obtained for the particleboard manufacturing with the three adhesive recipes and were compared with the minimal value of 0.35 N/mm2 required by the European standard in the field. Measuring the formaldehyde emissions, it was found that the three manufacturing recipes fell into emission classes E1 and E0. Recipes 2 and 3 were associated with good mechanical performances of particleboards, situated in the required limits of the European standards. As a main conclusion of the paper, it can be stated that the particleboards made with magnesium-lignosulphonate-based adhesive, with or without crosslinkers, can provide low formaldehyde emissions and also good mechanical strengths when crosslinkers such as pMDI and glucose are added. In this way magnesium lignosulfonate is really proving to be a good bio-adhesive.

Publisher

MDPI AG

Subject

Forestry

Reference67 articles.

1. Contribution of formaldehyde to respiratory cancer.

2. Formaldehyde: Toxicology and Hazards;Casteel;Vet. Hum. Toxicol.,1987

3. Producing Panels with Formaldehyde Emission at Wood Levels. COST E49 paperhttps://chimarhellas.com/wp-content/uploads/2021/06/athanassiadou-tsiantzi-markessini-paper-2.pdf

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3