Author:
Yang Myeong-Gyu,Pham Ngoc-Son,Choi Seong-Wook,Chung Keun-Yong,Baek Kwang-Hyun,Shim Yong
Abstract
A hybrid control method using a comparator and a charge control method is proposed for a single-inductor multiple-output (SIMO) DC-DC converter. SIMO DC-DC converters have the weaknesses relating to cross-regulation, as all the output channels share the energy stored in a single inductor. Although multiple control methods such as Time-Multiplexing Control (TMC) and Ordered Power Distributing Control (OPDC) have been proposed to prevent cross-regulation or to improve load capability, effective use of limited resources appears to have not yet been achieved. This paper introduces a hybrid control topology that (1) utilizes comparator-based regulations for most outputs and (2) uses a new charge control loop method for the last output to reduce cross-regulation with low hardware complexity. In addition, the proposed scheme efficiently reuses the system’s redundant energy by adaptively controlling the freewheeling switch that opens the path to the input battery to store the surplus energy resources again. The proposed SIMO DC-DC converter was designed and validated with a 0.18 μm 3.3 V CMOS process. The converter has four regulated outputs of 0.9, 1.2, 1.5, and 2.2 V, and as a result of the simulation, it was found that the cross-regulation was estimated to be 0.4 mV/mA when the output current changes by ~200 mA. In addition, estimated peak power conversion efficiency of 88.5% was achieved at a total output power of 405 mW.
Funder
National Research Foundation of Korea
Chung-Ang University
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献