Abstract
Trend estimation of river discharge is an important but difficult task because discharge time series are nonlinear and nonstationary. Previous studies estimated the trend of discharge using a linear method, which is not applicable to nonstationary time series with a nonlinear trend. To overcome this problem, we used a recently developed wavelet-based method, ensemble empirical mode decomposition (EEMD), which can separate nonstationary variations from the long-term nonlinear trend. Applying EEMD to annual discharge data of the 925 world’s largest rivers from 1948–2004, we found that the global discharge decreased before 1978 and increased after 1978, which contrasts the nonsignificant trend as estimated by the linear method over the same period. Further analyses show that precipitation had a consistent and dominant influence on the interannual variation of discharge of all six continents and globally, but the influences of precipitation and surface air temperature on the trend of discharge varied regionally. We also found that the estimated trend using EEMD was very sensitive to the discharge data length. Our results demonstrated some useful applications of the EEMD method in studying regional or global discharge, and it should be adopted for studying all nonstationary hydrological time series.
Funder
National Natural Science Foundation of China
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献