Experimental Study on Hydromechanical Behavior of an Artificial Rock Joint with Controlled Roughness

Author:

Choi Seungbeom,Jeon Byungkyu,Lee Sudeuk,Jeon SeokwonORCID

Abstract

Rock mass contains various discontinuities, such as faults, joints, and bedding planes. Among them, a joint is one of the most frequently encountered discontinuities in rock engineering applications. Generally, a joint exerts great influence on the mechanical and hydraulic behavior of rock mass, since it acts as a weak plane and as a fluid path in the rock mass. Therefore, an accurate understanding on joint characteristics is important in many projects. In-situ tests on joints are sometimes consumptive in terms of time and expenses so that the features are investigated by laboratory tests, providing fundamental properties for rock mass analyses. Although the behavior of a joint is affected by both mechanical and geometric conditions, the latter are often limited, since quantitative control on the conditions is quite complicated. In this study, artificial rock joints with various geometric conditions, i.e., joint roughness, were prepared in a quantitative manner and the hydromechanical characteristics were investigated by several laboratory experiments. Based on the results, a prediction model for hydraulic aperture was proposed in the form of ( e h / e m ) 3 = exp ( − 0.0462 c ) × ( 0.8864 ) J R C , which was a function of the mechanical aperture, joint roughness, and contact area. Relatively good agreement between the experimental results and predicted value indicated that the model is capable of estimating the hydraulic aperture properly.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3