Image Processing for Sustainable Remodeling: Introduction to Real-time Quality Inspection System of External Wall Insulation Works

Author:

Cho Sang-Ho,Lee Kyung-Tae,Kim Se-Heon,Kim Ju-Hyung

Abstract

The external wall insulation method was introduced to enhance the energy efficiency of existing buildings. It does not cause a decrease of inner space and costs less in comparison to methods that insert insulation panels inside walls. However, it has been reported that external wall insulation boards are disconnecting from walls due to malfunctions of the adhesive. This causes not only repair costs, but also serious injury to pedestrians. Separation problems occur when the bonded positions are incorrect and/or the total area and thickness of the adhesive is smaller than the required amount. A challenge is that these faults can hardly be inspected after installing boards. For this reason, a real-time inspection system is necessary to detect potential failure during adhesive works. Position, area and thickness are major aspects to inspect, and thus a method to process image data of these seems efficient. This paper presents a real-time quality inspection system introducing image processing technology to detect potential errors during adhesive works of external wall insulation, and it is predicted to contribute to achieving sustainable remodeling construction by reducing squandered material and labor costs. The system consists of a graphic data creation module to capture the results of adhesive works and a quality inspection module to judge the pass or fail of works according to an algorithm. A prototype is developed and validated against 100 panels with 800 adhesive points.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3