Thermodynamic Irreversibility Analysis of Dual-Skin Chest-Freezer

Author:

Matsuda Vinicius AkyoORCID,Gardenghi Álvaro RobertoORCID,Tibiriçá Cristiano BigonhaORCID,Cabezas-Gómez LubenORCID

Abstract

In this work, a transient analysis of a dual-skin chest-freezer refrigeration system, operating with R290, is studied numerically with the purpose of performing the characterization of the system through the second law of thermodynamics. A mathematical model which accounts for refrigerant mass distribution inside the system is used. In addition, this work addresses the calculation of entropy generation and exergy destruction for characterizing the system performance during its operations. In order to validate the model, a comparison with measured experimental data is performed for both pull-down and on-off operations. The characterization of the system through the second law of thermodynamics is conducted using two different methods. One consists of a direct calculation of the entropy generation rate and the second one in the calculation of exergy destruction rate. The equivalence of these two methods is used as an indicative of the “correctness” of the performed calculations. The model results agree near 97% with the experimental data used in the comparisons. Entropy generation and exergy destruction results along time for the whole system and in its individual components are characterized with the second law. These results are very useful for improving refrigeration system design.

Publisher

MDPI AG

Subject

General Physics and Astronomy

Reference26 articles.

1. The Role of Refrigeration in the Global Economy,2019

2. Pesquisa de Posse e Hábitos de Uso de Equipamentos Elétricos na Classe Residencial 2019https://eletrobras.com/pt/Paginas/PPH-2019.aspx

3. Thermal performance analysis for hot-wall condenser and evaporator configurations in refrigeration appliances

4. Heat transfer interactions between skin-type condensers and evaporators and their effect on the energy consumption of dual-skin chest-freezers

5. Hydrocarbons as refrigerants — an overview

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3