iTRAQ-Based Quantitative Proteomic Analysis Reveals Changes in Metabolite Biosynthesis in Monascus purpureus in Response to a Low-Frequency Magnetic Field

Author:

Zhang Jialan,Liu Yingbao,Li Li,Gao MengxiangORCID

Abstract

Background: Low-frequency magnetic fields (LF-MFs) dampen the citrinin output by Monascus purpureus in fermentations. The influence of LF-MFs on biosynthesis by M. purpureus was evaluated at the protein level. Methods: Cultures were treated with a 1.6-mT MF from day 0 to day 2 of incubation, and secondary metabolite production was evaluated on the day 12 of incubation. All proteins were extracted from M. purpureus mycelia and subjected to isobaric tags for relative and absolute quantification (iTRAQ) labeling and subsequent liquid chromatography/mass spectrometry (LC-MS/MS) analysis on day 6 of fermentation. Results: There was no difference in biomass between the treated samples and the control. Citrinin production was 46.7% lower, and the yields of monacolin K and yellow, orange, and red pigment were 29.3%, 31.3%, 41.7%, and 40.3% higher, respectively, in the exposed samples compared to the control. Protein expression in M. purpureus under LF-MF treatment was quantified using iTRAQ technology. Of 2031 detected proteins, 205 were differentially expressed. The differentially-expressed proteins were subjected to Gene Ontology (GO) functional annotation and statistical analysis, which revealed that they mainly refer to biological metabolism, translation, antioxidant, transport and defense pathways. Among all the tagged proteins, emphasis was placed on the analysis of those involved in the synthesis of citrinin, pigment and monacolin K was emphasized. Conclusions: LF-MFs affected Monascus secondary metabolism at the protein level, and aggregate data for all the protein profiles in LF-MF-treated Monascus was obtained.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Toxicology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3