The phoD-Harboring Microorganism Communities and Networks in Karst and Non-Karst Forests in Southwest China

Author:

Chen Min12,Qin Hanlian2,Liang Yueming23,Xiao Dan45ORCID,Yan Peidong3,Yin Mingshan6,Pan Fujing1

Affiliation:

1. Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, College of Environmental and Engineering, Guilin University of Technology, Guilin 541006, China

2. Karst Dynamics Laboratory, Ministry of Natural Resources, Institute of Karst Geology, Chinese Academy of Geological Sciences, Guilin 541004, China

3. Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation, Guangxi Forestry Research Institute, Nanning 530002, China

4. Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China

5. Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Hechi 547000, China

6. Huashan Forest Farm, Hechi 547000, China

Abstract

Phosphorous (P) limitation is common not only in tropical rainforest and savanna ecosystems, but also in karst forest ecosystems. Soil phoD-harboring microorganisms are essential in soil P cycles, but very little information is available about them in karst ecosystems. A total of 36 soil samples were collected from two types of forest ecosystems (karst and non-karst) over two seasons (rainy and dry), and the diversity and community structure of soil phoD-harboring microorganisms were measured. The contents of available P (AP), soil total P (TP), microbial biomass P (MBP) and the activity of alkaline phosphatase (ALP) in karst forest soils were higher than those in non-karst forest soils, whereas the contents of CaCl2-P, citrate-P, enzyme-P and the activity of acid phosphatase (ACP) were the opposite. Soil AP content was significantly higher in the rainy season than in the dry season, whereas ALP activity was the opposite. The community structure of phoD-harboring microorganisms was more influenced by forest-type than season. The network connectivity was higher in non-karst forests than in karst forests. Two dominant orders, Burkholderiales and Rhizobiales, were the keystone taxa in these networks in two forests, and their relative abundances were higher in non-karst forests than in karst forests. The microorganic diversity indices (e.g., Shannon–Wiener, Evenness, Richness, and Chao1) were substantially higher in karst than in non-karst forests. These indices were positively correlated with the contents of SOC and TN in the two forests; meanwhile, richness and evenness indices were positively correlated with citrate-P, HCl-P, and TP in non-karst forests. Structural equation modelling results showed that the relative abundance of phoD-harboring microorganisms was mainly influenced by pH and AP, with direct affection of soil AP, pH, and ALP activity, and indirect affection of ALP activity through affecting AP. These findings highlight that the P cycle is mainly regulated by the diversity of phoD-harboring microorganisms in karst forest ecosystems, whereas it is mainly regulated by dominant taxa in non-karst forest ecosystems. In future, regulating the interaction networks and keystone taxa of phoD-harboring microorganisms may be critical to alleviating P limitations in karst forest ecosystems.

Funder

National Natural Science Foundation of China

Guang-xi Key Laboratory of Superior Timber Trees Resource Cultivation

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3