Preparation of Colored Microcapsule Phase Change Materials with Colored SiO2 Shell for Thermal Energy Storage and Their Application in Latex Paint Coating

Author:

Ma EnpeiORCID,Wei Zhenghuang,Lian Cheng,Zhou Yinping,Gan Shichang,Xu Bin

Abstract

This article reports the design and manufacture of colored microcapsules with specific functions and their application in architectural interior wall coating. Utilizing reactive dyes grafted SiO2 shell to encapsulate paraffin through interfacial polymerization and chemical grafting methods, this experiment successfully synthesized paraffin@SiO2 colored microcapsules. The observations of surface morphology demonstrated that the colored microcapsules had a regular spherical morphology and a well-defined core-shell structure. The analysis of XRD and FT-IR confirmed the presence of amorphous SiO2 shell and the grafting reactive dyes, and the paraffin possessed high crystallinity. Compared with pristine paraffin, the thermal conductivity of paraffin@SiO2 colored microcapsules was significantly enhanced. The results of DSC revealed that the paraffin@SiO2 colored microcapsules performed high encapsulation efficiency and desirable latent heat storage capability. Besides, the examinations of UV-vis and TGA showed that the paraffin@SiO2 colored microcapsules exhibited good thermal reliability, thermal stability, and UV protection property. The analysis of infrared imaging indicated that the prepared latex paint exhibited remarkable temperature-regulated property. Compared with normal interior wall coatings, the temperature was reduced by about 2.5 °C. With such incomparable features, the paraffin@SiO2 colored microcapsules not only appeared well in their solar thermal energy storage and temperature-regulated property, but also make the colored latex paint coating have superb colored fixing capabilities.

Publisher

MDPI AG

Subject

General Materials Science

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3