Intensity, Duration and Spatial Coverage of Aridity during Meteorological Drought Years over Northeast Thailand

Author:

Dlamini Tenanile,Songsom VeeranunORCID,Koedsin WerapongORCID,Ritchie Raymond J.

Abstract

Gaps in drought monitoring result in insufficient preparation measures for vulnerable areas. This paper employed the standardized precipitation index (SPI) to identify meteorological drought years and the Thornthwaite aridity index (TAI) to evaluate aridity in three provinces of northeast Thailand growing cassava and sugarcane at massive scales. Precipitation and temperature data were sourced from Global Land Data Assimilation System-2 (GLDAS-2) Noah Model products at 0.25 degree resolution and used for calculating the drought indices. This study was conducted for the period of 2004 to 2015. The SPI was computed for 1, 3 and 6 months scales to measure short- to medium-term moisture. The results indicated major meteorological drought years as 2004, 2005, 2010, 2012, 2014 and 2015. A range of 1 to 3 months of extreme rainfall shortage was experienced during each of these years, including the growing season of 2004, 2012 and 2015. TAI-based results indicated that the area experiences an average of 7 to 8 months of aridity during drought periods, compared to the historical overall average of 6 months. The spatial TAI for the major drought years indicated delayed onset, intermittency or early cut-off of the rainy season. The year 2004 was the most intense in terms of aridity. The longest duration of aridness for some areas was between 9 and 10 months in 2012 and 2014, respectively. In terms of spatial coverage, all meteorological drought years had out-of-season aridity. Based on the region’s historical records, this highlighted an increase in the frequency of droughts and duration of aridity. A disturbance in the growing season has the potential to affect crop yields, hence, the need to improve and strengthen existing adaptive measures for agriculture as the main source of food and income in the northeast.

Publisher

MDPI AG

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3