Numerical Investigation on Aerodynamics of a Rectangular Blade Rotor under Mars Air Conditions Using Large Eddy Simulation

Author:

Huang Jie12,Huang Daqing1,Chen Tao2,Li Hongda2

Affiliation:

1. College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics, No. 29, Yudao Street, Nanjing 210016, China

2. School of Aeronautical Engineering, Nanjing Vocational University of Industry Technology, No. 1, Yangshanbei Road, Nanjing 210016, China

Abstract

The study of the aerodynamics of a flight vehicle under Martian air conditions is experimentally difficult due to its characteristics such as low air density and temperature, making the vehicle operate at an ultra-low Reynolds number, which in turn introduces a complex flow field. In this paper, to find a proper computational fluid dynamics (CFD) method with which to better understand the aerodynamics of rotor-type aircraft under Martian air conditions, the aerodynamic performance of a rotor with rectangular blades under ultra-low density Martian air conditions is studied. A simulation scheme using a large eddy simulation solver and sliding meshing technology is established, and the method is verified based on experimental results from a Mars Air Simulator (MAS). In addition, the influence of the test bench and chamber is investigated through flow field analysis. The results show that the established method can predict lift in a very accurate manner, but that the torque prediction is not so promising. The study also determines that the fixture and the chamber wall of an MAS has little influence on the prediction of aerodynamic performance due to the quickly decreasing of flow speed and dissipation of vortexes. The test bench has about 5% influence on lift prediction, possibly due to the ground effect of the bench. In addition, simulation under actual Martian air conditions shows that the results agree well with the MAS experiment’s results, indicating that the temperature difference has little influence on the lift performance, and therefore that the MAS is a good tool for the lift prediction of Martian helicopters.

Funder

Ministry of Science and Technology Innovation Method Work Special Project

Education Reform in Jiangsu Province

Aeronautical Science Foundation of China

Rotor Aerodynamics Key Laboratory Fund Project

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3