Effect of High Sulfur Diet on Rumen Fermentation, Microflora, and Epithelial Barrier Function in Steers

Author:

Wu HaoORCID,Li Yan,Meng Qingxiang,Zhou Zhenming

Abstract

These experiments were conducted to evaluate the effect of excessive sulfur on rumen fermentation, microflora, and epithelial barrier function in steers through in vitro gas production and animal feeding experiments. Nine and four levels of sulfur addition were evaluated in in vitro ruminal fermentation and animal feeding experiment, respectively. The results showed that increasing the level of sulfur in substrates decreased the total gas and methane production linearly, while increasing the production of hydrogen sulfide gas (p < 0.01). Volatile fatty acid concentrations, especially that of butyric acid, were increased by extra sulfur (p < 0.01). Sulfur content in the diet had no significant effect (p > 0.05) on most of the rumen microbes, except for Desulfovibrio, one of the major sulfate-reducing bacteria (SRB) in the rumen, whose population increased by adding extra sulfur (p < 0.001). The changes in the morphology of rumen epithelium and thickening of the total epithelial layer were mainly attributed to the increase in the acanthosis cell layer and stratum basale (p < 0.05). Further, the relative expressions of two tight junction protein regulating genes, CLDN-1 and TJP1, were reduced (p < 0.05). Excessive sulfur in the diet can change the type of rumen fermentation, sulfate metabolism and SRB population, and the rumen epithelial barrier function. The results of this study demonstrated that sulfur can be used as a methane inhibitor with the mechanism that SRB competitively used protons to produce hydrogen sulfide. However, a higher level of sulfur in the diet could increase the inflammatory reaction of the rumen epithelium which may affect nutrient absorption.

Funder

National Natural Science Foundation of China

Government Purchase Service

China Agricultural Research System

Publisher

MDPI AG

Subject

General Veterinary,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3