The Potential Distribution of Juniperus rigida Sieb. et Zucc. Vary Diversely in China under the Stringent and High GHG Emission Scenarios Combined Bioclimatic, Soil, and Topographic Factors

Author:

Lv ZhenjiangORCID,Li Dengwu

Abstract

Global warming poses an enormous threat to particular species with shifts to their suitable habitat. Juniperus rigida Sieb. et Zucc., an endemic species to East Asia and a pioneer species in the Loess plateau region, is endangered because of the shrinking and scattered habitat threatened by climate change. For the sake of analyzing the impact of climate warming on its possible habitat, we herein projected the current and future potential habitats of J. rigida in China and comparatively analyzed the ecological habitat changes in three main distribution regions. There were 110 specimen records of J. rigida collected across China and 22 environmental datasets, including bioclimatic variables and soil and topographical factors, selected by the Pearson Correlation Coefficient. The MaxEnt model based on specimen presence and environmental factors was used for projecting the potential habitats of J. rigida in China in the 2050s and the 2070s of RCP 2.6 and RCP 8.5 scenarios. The results indicated an excellence model performance with the average value of the area under curve (AUC) is 0.928. The mean temperature of the driest quarter (MTDq) and the temperature annual range (TAR) provided important contributions to the potential distribution of J. rigida. There were three main distribution areas in China, the Xinjiang region, the Loess-Inner Mongolian Plateau region, and the Changbai Mountain region. The distribution increased overall in area under RCP 2.6 and decreased for RCP 8.5. The mean altitude of the core distribution shifted upward in general under both scenarios. The Loess–Inner Mongolian Plateau region is the biggest distribution, encompassing ca. 61.39 × 104 km2 (86.87 × 104 km2 in China). The region threatened most by climate change is located in the Changbai Mountain distribution, with the centroid of the cord suitable habitat migrating southwest about 227.47 and 260.32 km under RCP 2.6 and RCP 8.5 by the 2070s. In summary, these findings provided a well-grounded understanding of the effect of climate change on ecological distribution and furnished theory evidence for the protection, management, and sustainable use of J. rigida.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3