Tree Compatibility, Incomplete Directed Perfect Phylogeny, and Dynamic Graph Connectivity: An Experimental Study

Author:

Fernández-Baca David,Liu Lei

Abstract

We study two problems in computational phylogenetics. The first is tree compatibility. The input is a collection of phylogenetic trees over different partially-overlapping sets of species. The goal is to find a single phylogenetic tree that displays all the evolutionary relationships implied by . The second problem is incomplete directed perfect phylogeny (IDPP). The input is a data matrix describing a collection of species by a set of characters, where some of the information is missing. The question is whether there exists a way to fill in the missing information so that the resulting matrix can be explained by a phylogenetic tree satisfying certain conditions. We explain the connection between tree compatibility and IDPP and show that a recent tree compatibility algorithm is effectively a generalization of an earlier IDPP algorithm. Both algorithms rely heavily on maintaining the connected components of a graph under a sequence of edge and vertex deletions, for which they use the dynamic connectivity data structure of Holm et al., known as HDT. We present a computational study of algorithms for tree compatibility and IDPP. We show experimentally that substituting HDT by a much simpler data structure—essentially, a single-level version of HDT—improves the performance of both of these algorithm in practice. We give partial empirical and theoretical justifications for this observation.

Funder

National Science Foundation

Publisher

MDPI AG

Subject

Computational Mathematics,Computational Theory and Mathematics,Numerical Analysis,Theoretical Computer Science

Reference28 articles.

1. The complexity of reconstructing trees from qualitative characters and subtrees

2. Phylogenetics;Semple,2003

3. Phylogenetic Supertrees: Combining Information to Reveal the Tree of Life,2004

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A simpler linear-time algorithm for the common refinement of rooted phylogenetic trees on a common leaf set;Algorithms for Molecular Biology;2021-12

2. Testing the agreement of trees with internal labels;Algorithms for Molecular Biology;2021-12

3. Incomplete Directed Perfect Phylogeny in Linear Time;Lecture Notes in Computer Science;2021

4. Testing the Agreement of Trees with Internal Labels;Bioinformatics Research and Applications;2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3