Impacts of Climate Change on the Potential Distribution of Three Cytospora Species in Xinjiang, China

Author:

Li Quansheng1ORCID,Cao Shanshan2,Wang Lei3,Hou Ruixia4,Sun Wei2

Affiliation:

1. College of Computer and Information Engineering, Xinjiang Agricultural University, Urumqi 830052, China

2. Agricultural Information Institute of Chinese Academy of Agricultural Sciences, Beijing 100081, China

3. Modern Forestry Institute of Xinjiang Academy of Forestry Sciences, Urumqi 830000, China

4. Research Institute of Resource Information Techniques, CAF, Beijing 100091, China

Abstract

Xinjiang is an important forest and fruit production area in China, and Cytospora canker, caused by the genus Cytospora Ehrenb., has caused serious losses to forestry production in Xinjiang. In this study, we constructed ensemble models based on Biomod2 to assess the potential geographical distribution of Cytospora chrysosperma, C. nivea, and C. mali in Xinjiang, China and their changes under different climate change scenarios, using species occurrence data and four types of environmental variables: bioclimatic, topographic, NDVI, and soil. The model performance assessment metrics (AUC and TSS) indicated that the ensemble models are highly reliable. The results showed that NDVI had the most important effect on the distribution of all three species, but there were differences in the response patterns, and bioclimatic factors such as temperature and precipitation also significantly affected the distribution of the three species. C. chrysosperma showed the broadest ecological adaptation and the greatest potential for expansion. C. nivea and C. mali also showed expansion trends, but to a lesser extent. The overlapping geographical distribution areas of the three species increased over time and with an intensification of the climate scenarios, especially under the high-emission SSP585 scenario. The centroids of the geographical distribution for all three species generally shifted towards higher latitude regions in the northeast, reflecting their response to climate warming. C. chrysosperma may become a more prevalent forest health threat in the future, and an increase in the overlapping geographical distribution areas of the three species may lead to an increased risk of multiple infections. These findings provide an important basis for understanding and predicting the distribution and spread of the genus Cytospora in Xinjiang and are important for the development of effective forest disease prevention and control strategies.

Funder

National Natural Science Foundation of China

Special Project for the Creation of an Environment (Talents and Bases)—Construction of Science and Technology Innovation Bases (Construction of Resource Sharing Platform) of Xinjiang Province, China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3