Combining Performance Testing and Metadata Models to Support Fault Detection and Diagnostics in Smart Buildings

Author:

Markoska Elena,Johansen Aslak,Kjærgaard Mikkel Baun,Lazarova-Molnar Sanja,Jradi MuhyiddineORCID,Jørgensen Bo Nørregaard

Abstract

Performance testing of components and subsystems of buildings is a promising practice for increasing energy efficiency and closing gaps between intended and actual performance of buildings. A typical shortcoming of performance testing is the difficulty of linking a failing test to a faulty or underperforming component. Furthermore, a failing test can also be linked to a wrongly configured performance test. In this paper, we present Building Metadata Performance Testing (BuMPeT), a method that addresses this shortcoming by using building metadata models to extend performance testing with fault detection and diagnostics (FDD) capabilities. We present four different procedures that apply BuMPeT to different data sources and components. We have applied the proposed method to a case study building, located in Denmark, to test its capacity and benefits. Additionally, we use two real case scenarios to showcase examples of failing performance tests in the building, as well as discovery of causes of underperformance. Finally, to examine the limits to the benefits of the applied procedure, a detailed elaboration of a hypothetical scenario is presented. Our findings demonstrate that the method has potential and it can serve to increase the energy efficiency of a wide range of buildings.

Funder

Innovationsfonden

Publisher

MDPI AG

Subject

Artificial Intelligence,Applied Mathematics,Industrial and Manufacturing Engineering,Human-Computer Interaction,Information Systems,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3