Harmonizing Image Forgery Detection & Localization: Fusion of Complementary Approaches

Author:

Mareen Hannes1ORCID,De Neve Louis1ORCID,Lambert Peter1ORCID,Van Wallendael Glenn1ORCID

Affiliation:

1. Internet Technology and Data Science Lab (IDLab), Ghent University—imec, 9052 Ghent, Belgium

Abstract

Image manipulation is easier than ever, often facilitated using accessible AI-based tools. This poses significant risks when used to disseminate disinformation, false evidence, or fraud, which highlights the need for image forgery detection and localization methods to combat this issue. While some recent detection methods demonstrate good performance, there is still a significant gap to be closed to consistently and accurately detect image manipulations in the wild. This paper aims to enhance forgery detection and localization by combining existing detection methods that complement each other. First, we analyze these methods’ complementarity, with an objective measurement of complementariness, and calculation of a target performance value using a theoretical oracle fusion. Then, we propose a novel fusion method that combines the existing methods’ outputs. The proposed fusion method is trained using a Generative Adversarial Network architecture. Our experiments demonstrate improved detection and localization performance on a variety of datasets. Although our fusion method is hindered by a lack of generalization, this is a common problem in supervised learning, and hence a motivation for future work. In conclusion, this work deepens our understanding of forgery detection methods’ complementariness and how to harmonize them. As such, we contribute to better protection against image manipulations and the battle against disinformation.

Funder

Flemish Government

IDLab

Research Foundation—Flanders

Flanders Innovation & Entrepreneurship

European Union

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Graphics and Computer-Aided Design,Computer Vision and Pattern Recognition,Radiology, Nuclear Medicine and imaging

Reference47 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3