Optimized Memory Allocation and Power Minimization for FPGA-Based Image Processing

Author:

Garcia PauloORCID,Bhowmik DeepayanORCID,Stewart Robert,Michaelson Greg,Wallace Andrew

Abstract

Memory is the biggest limiting factor to the widespread use of FPGAs for high-level image processing, which require complete frame(s) to be stored in situ. Since FPGAs have limited on-chip memory capabilities, efficient use of such resources is essential to meet performance, size and power constraints. In this paper, we investigate allocation of on-chip memory resources in order to minimize resource usage and power consumption, contributing to the realization of power-efficient high-level image processing fully contained on FPGAs. We propose methods for generating memory architectures, from both Hardware Description Languages and High Level Synthesis designs, which minimize memory usage and power consumption. Based on a formalization of on-chip memory configuration options and a power model, we demonstrate how our partitioning algorithms can outperform traditional strategies. Compared to commercial FPGA synthesis and High Level Synthesis tools, our results show that the proposed algorithms can result in up to 60% higher utilization efficiency, increasing the sizes and/or number of frames that can be accommodated, and reduce frame buffers’ dynamic power consumption by up to approximately 70%. In our experiments using Optical Flow and MeanShift Tracking, representative high-level algorithms, data show that partitioning algorithms can reduce total power by up to 25% and 30%, respectively, without impacting performance.

Funder

Engineering and Physical Sciences Research Council

Defence Science and Technology Laboratory

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Graphics and Computer-Aided Design,Computer Vision and Pattern Recognition,Radiology, Nuclear Medicine and imaging

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An Ultralow-Power Real-Time Machine Learning Based fNIRS Motion Artifacts Detection;IEEE Transactions on Very Large Scale Integration (VLSI) Systems;2024-04

2. Design and Implementation of Image Sensor Data Capture Based on FPGA;SN Computer Science;2023-12-12

3. Pruning Binarized Neural Networks Enables Low-Latency, Low-Power FPGA-Based Handwritten Digit Classification;2023 IEEE High Performance Extreme Computing Conference (HPEC);2023-09-25

4. FPGA to study the behavior of a maneuvering UGV using sliding innovation filter;Signal Processing, Sensor/Information Fusion, and Target Recognition XXXII;2023-06-14

5. Optical flow algorithms optimized for speed, energy and accuracy on embedded GPUs;Journal of Real-Time Image Processing;2023-03-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3