upU-Net Approaches for Background Emission Removal in Fluorescence Microscopy

Author:

Benfenati AlessandroORCID

Abstract

The physical process underlying microscopy imaging suffers from several issues: some of them include the blurring effect due to the Point Spread Function, the presence of Gaussian or Poisson noise, or even a mixture of these two types of perturbation. Among them, auto–fluorescence presents other artifacts in the registered image, and such fluorescence may be an important obstacle in correctly recognizing objects and organisms in the image. For example, particle tracking may suffer from the presence of this kind of perturbation. The objective of this work is to employ Deep Learning techniques, in the form of U-Nets like architectures, for background emission removal. Such fluorescence is modeled by Perlin noise, which reveals to be a suitable candidate for simulating such a phenomenon. The proposed architecture succeeds in removing the fluorescence, and at the same time, it acts as a denoiser for both Gaussian and Poisson noise. The performance of this approach is furthermore assessed on actual microscopy images and by employing the restored images for particle recognition.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Graphics and Computer-Aided Design,Computer Vision and Pattern Recognition,Radiology, Nuclear Medicine and imaging

Reference68 articles.

1. Image deblurring with Poisson data: from cells to galaxies

2. Inverse Imaging with Poisson Data;Bertero,2018

3. ℓ2—ℓ0 optimization for single molecule localization microscopy;Bechensteen,2018

4. Image regularization for Poisson data

5. Directional TGV-Based Image Restoration under Poisson Noise

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Neural blind deconvolution with Poisson data;Inverse Problems;2023-03-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3