Airborne Hyperspectral Imagery for Band Selection Using Moth–Flame Metaheuristic Optimization

Author:

Anand RajuORCID,Samiaappan SathishkumarORCID,Veni ShanmughamORCID,Worch Ethan,Zhou Meilun

Abstract

In this research, we study a new metaheuristic algorithm called Moth–Flame Optimization (MFO) for hyperspectral band selection. With the hundreds of highly correlated narrow spectral bands, the number of training samples required to train a statistical classifier is high. Thus, the problem is to select a subset of bands without compromising the classification accuracy. One of the ways to solve this problem is to model an objective function that measures class separability and utilize it to arrive at a subset of bands. In this research, we studied MFO to select optimal spectral bands for classification. MFO is inspired by the behavior of moths with respect to flames, which is the navigation method of moths in nature called transverse orientation. In MFO, a moth navigates the search space through a process called transverse orientation by keeping a constant angle with the Moon, which is a compelling strategy for traveling long distances in a straight line, considering that the Moon’s distance from the moth is considerably long. Our research tested MFO on three benchmark hyperspectral datasets—Indian Pines, University of Pavia, and Salinas. MFO produced an Overall Accuracy (OA) of 88.98%, 94.85%, and 97.17%, respectively, on the three datasets. Our experimental results indicate that MFO produces better OA and Kappa when compared to state-of-the-art band selection algorithms such as particle swarm optimization, grey wolf, cuckoo search, and genetic algorithms. The analysis results prove that the proposed approach effectively addresses the spectral band selection problem and provides a high classification accuracy.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Graphics and Computer-Aided Design,Computer Vision and Pattern Recognition,Radiology, Nuclear Medicine and imaging

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3