Abstract
Ultrasound (US) imaging is a critical tool in emergency and military medicine because of its portability and immediate nature. However, proper image interpretation requires skill, limiting its utility in remote applications for conditions such as pneumothorax (PTX) which requires rapid intervention. Artificial intelligence has the potential to automate ultrasound image analysis for various pathophysiological conditions. Training models require large data sets and a means of troubleshooting in real-time for ultrasound integration deployment, and they also require large animal models or clinical testing. Here, we detail the development of a dynamic synthetic tissue phantom model for PTX and its use in training image classification algorithms. The model comprises a synthetic gelatin phantom cast in a custom 3D-printed rib mold and a lung mimicking phantom. When compared to PTX images acquired in swine, images from the phantom were similar in both PTX negative and positive mimicking scenarios. We then used a deep learning image classification algorithm, which we previously developed for shrapnel detection, to accurately predict the presence of PTX in swine images by only training on phantom image sets, highlighting the utility for a tissue phantom for AI applications.
Funder
U.S. Army Medical Research Development and Command
Oak Ridge Institute for Science and Education
Subject
Electrical and Electronic Engineering,Computer Graphics and Computer-Aided Design,Computer Vision and Pattern Recognition,Radiology, Nuclear Medicine and imaging
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献