Automatic Detection of Post-Operative Clips in Mammography Using a U-Net Convolutional Neural Network

Author:

Schnitzler Tician1ORCID,Ruppert Carlotta2ORCID,Hejduk Patryk2,Borkowski Karol2,Kajüter Jonas3ORCID,Rossi Cristina2,Ciritsis Alexander2,Landsmann Anna2ORCID,Zaytoun Hasan1,Boss Andreas2,Schindera Sebastian1,Burn Felice1ORCID

Affiliation:

1. Institute of Radiology, Cantonal Hospital Aarau, 5001 Aarau, Switzerland

2. Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, 8091 Zurich, Switzerland

3. Institute of Diagnostic and Interventional Radiology, University Hospital Basel, 4031 Basel, Switzerland

Abstract

Background: After breast conserving surgery (BCS), surgical clips indicate the tumor bed and, thereby, the most probable area for tumor relapse. The aim of this study was to investigate whether a U-Net-based deep convolutional neural network (dCNN) may be used to detect surgical clips in follow-up mammograms after BCS. Methods: 884 mammograms and 517 tomosynthetic images depicting surgical clips and calcifications were manually segmented and classified. A U-Net-based segmentation network was trained with 922 images and validated with 394 images. An external test dataset consisting of 39 images was annotated by two radiologists with up to 7 years of experience in breast imaging. The network’s performance was compared to that of human readers using accuracy and interrater agreement (Cohen’s Kappa). Results: The overall classification accuracy on the validation set after 45 epochs ranged between 88.2% and 92.6%, indicating that the model’s performance is comparable to the decisions of a human reader. In 17.4% of cases, calcifications have been misclassified as post-operative clips. The interrater reliability of the model compared to the radiologists showed substantial agreement (κreader1 = 0.72, κreader2 = 0.78) while the readers compared to each other revealed a Cohen’s Kappa of 0.84, thus showing near-perfect agreement. Conclusions: With this study, we show that surgery clips can adequately be identified by an AI technique. A potential application of the proposed technique is patient triage as well as the automatic exclusion of post-operative cases from PGMI (Perfect, Good, Moderate, Inadequate) evaluation, thus improving the quality management workflow.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3