A 2.5D Self-Training Strategy for Carotid Artery Segmentation in T1-Weighted Brain Magnetic Resonance Images

Author:

de Araújo Adriel Silva1,Pinho Márcio Sarroglia1,Marques da Silva Ana Maria2ORCID,Fiorentini Luis Felipe34,Becker Jefferson56ORCID

Affiliation:

1. School of Technology, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre 90619-900, Brazil

2. Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo 05403-010, Brazil

3. Centro de Diagnóstico por Imagem, Santa Casa de Misericórdia de Porto Alegre, Porto Alegre 90020-090, Brazil

4. Grupo Hospitalar Conceição, Porto Alegre 91350-200, Brazil

5. Hospital São Lucas, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre 90610-000, Brazil

6. Brain Institute, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre 90619-900, Brazil

Abstract

Precise annotations for large medical image datasets can be time-consuming. Additionally, when dealing with volumetric regions of interest, it is typical to apply segmentation techniques on 2D slices, compromising important information for accurately segmenting 3D structures. This study presents a deep learning pipeline that simultaneously tackles both challenges. Firstly, to streamline the annotation process, we employ a semi-automatic segmentation approach using bounding boxes as masks, which is less time-consuming than pixel-level delineation. Subsequently, recursive self-training is utilized to enhance annotation quality. Finally, a 2.5D segmentation technique is adopted, wherein a slice of a volumetric image is segmented using a pseudo-RGB image. The pipeline was applied to segment the carotid artery tree in T1-weighted brain magnetic resonance images. Utilizing 42 volumetric non-contrast T1-weighted brain scans from four datasets, we delineated bounding boxes around the carotid arteries in the axial slices. Pseudo-RGB images were generated from these slices, and recursive segmentation was conducted using a Res-Unet-based neural network architecture. The model’s performance was tested on a separate dataset, with ground truth annotations provided by a radiologist. After recursive training, we achieved an Intersection over Union (IoU) score of (0.68 ± 0.08) on the unseen dataset, demonstrating commendable qualitative results.

Funder

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil

Novartis

Publisher

MDPI AG

Reference41 articles.

1. Zhu, K., Xiong, N.N., and Lu, M. (2023, January 6–8). A Survey of Weakly-supervised Semantic Segmentation. Proceedings of the 2023 IEEE 9th International Conference on Big Data Security on Cloud, IEEE International Conference on High Performance and Smart Computing, and IEEE International Conference on Intelligent Data and Security, BigDataSecurity-HPSC-IDS, New York, NY, USA.

2. A Comprehensive Analysis of Weakly-Supervised Semantic Segmentation in Different Image Domains;Chan;Int. J. Comput. Vis.,2021

3. Kumar, A., Jiang, H., Imran, M., Valdes, C., Leon, G., Kang, D., Nataraj, P., Zhou, Y., Weiss, M.D., and Shao, W. (2024). A Flexible 2.5D Medical Image Segmentation Approach with In-Slice and Cross-Slice Attention. arXiv.

4. Carmo, D., Rittner, L., and Lotufo, R. (2022). Open-source tool for Airway Segmentation in Computed Tomography using 2.5D Modified EfficientDet: Contribution to the ATM22 Challenge. arXiv.

5. Avesta, A., Hossain, S., Lin, M., de Aboian, M., Krumholz, H.M., and Aneja, S. (2023). Comparing 3D, 2.5D, and 2D Approaches to Brain Image Auto-Segmentation. Bioengineering, 10.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3