An Approach toward Automatic Specifics Diagnosis of Breast Cancer Based on an Immunohistochemical Image

Author:

Berezsky Oleh,Pitsun Oleh,Melnyk Grygoriy,Datsko Tamara,Izonin Ivan,Derysh Bohdan

Abstract

The paper explored the problem of automatic diagnosis based on immunohistochemical image analysis. The issue of automated diagnosis is a preliminary and advisory statement for a diagnostician. The authors studied breast cancer histological and immunohistochemical images using the following biomarkers progesterone, estrogen, oncoprotein, and a cell proliferation biomarker. The authors developed a breast cancer diagnosis method based on immunohistochemical image analysis. The proposed method consists of algorithms for image preprocessing, segmentation, and the determination of informative indicators (relative area and intensity of cells) and an algorithm for determining the molecular genetic breast cancer subtype. An adaptive algorithm for image preprocessing was developed to improve the quality of the images. It includes median filtering and image brightness equalization techniques. In addition, the authors developed a software module part of the HIAMS software package based on the Java programming language and the OpenCV computer vision library. Four molecular genetic breast cancer subtypes could be identified using this solution: subtype Luminal A, subtype Luminal B, subtype HER2/neu amplified, and basalt-like subtype. The developed algorithm for the quantitative characteristics of the immunohistochemical images showed sufficient accuracy in determining the cancer subtype “Luminal A”. It was experimentally established that the relative area of the nuclei of cells covered with biomarkers of progesterone, estrogen, and oncoprotein was more than 85%. The given approach allows for automating and accelerating the process of diagnosis. Developed algorithms for calculating the quantitative characteristics of cells on immunohistochemical images can increase the accuracy of diagnosis.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Graphics and Computer-Aided Design,Computer Vision and Pattern Recognition,Radiology, Nuclear Medicine and imaging

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3