A Novel Deep-Learning-Based Framework for the Classification of Cardiac Arrhythmia

Author:

Jamil SonainORCID,Rahman MuhibUrORCID

Abstract

Cardiovascular diseases (CVDs) are the primary cause of death. Every year, many people die due to heart attacks. The electrocardiogram (ECG) signal plays a vital role in diagnosing CVDs. ECG signals provide us with information about the heartbeat. ECGs can detect cardiac arrhythmia. In this article, a novel deep-learning-based approach is proposed to classify ECG signals as normal and into sixteen arrhythmia classes. The ECG signal is preprocessed and converted into a 2D signal using continuous wavelet transform (CWT). The time–frequency domain representation of the CWT is given to the deep convolutional neural network (D-CNN) with an attention block to extract the spatial features vector (SFV). The attention block is proposed to capture global features. For dimensionality reduction in SFV, a novel clump of features (CoF) framework is proposed. The k-fold cross-validation is applied to obtain the reduced feature vector (RFV), and the RFV is given to the classifier to classify the arrhythmia class. The proposed framework achieves 99.84% accuracy with 100% sensitivity and 99.6% specificity. The proposed algorithm outperforms the state-of-the-art accuracy, F1-score, and sensitivity techniques.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Graphics and Computer-Aided Design,Computer Vision and Pattern Recognition,Radiology, Nuclear Medicine and imaging

Reference35 articles.

1.

Cardiovascular disease as a leading cause of death: how are pharmacists getting involved?

2. ECG Electrode Placements for Magnetohydrodynamic Voltage Suppression

3. Novel methodology for cardiac arrhythmias classification based on long-duration ECG signal fragments analysis;Pławiak,2020

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3