Fast Data Generation for Training Deep-Learning 3D Reconstruction Approaches for Camera Arrays

Author:

Barrios Théo1ORCID,Prévost Stéphanie1ORCID,Loscos Céline1ORCID

Affiliation:

1. LICIIS Laboratory, University of Reims Champagne-Ardenne, 51100 Reims, France

Abstract

In the last decade, many neural network algorithms have been proposed to solve depth reconstruction. Our focus is on reconstruction from images captured by multi-camera arrays which are a grid of vertically and horizontally aligned cameras that are uniformly spaced. Training these networks using supervised learning requires data with ground truth. Existing datasets are simulating specific configurations. For example, they represent a fixed-size camera array or a fixed space between cameras. When the distance between cameras is small, the array is said to be with a short baseline. Light-field cameras, with a baseline of less than a centimeter, are for instance in this category. On the contrary, an array with large space between cameras is said to be of a wide baseline. In this paper, we present a purely virtual data generator to create large training datasets: this generator can adapt to any camera array configuration. Parameters are for instance the size (number of cameras) and the distance between two cameras. The generator creates virtual scenes by randomly selecting objects and textures and following user-defined parameters like the disparity range or image parameters (resolution, color space). Generated data are used only for the learning phase. They are unrealistic but can present concrete challenges for disparity reconstruction such as thin elements and the random assignment of textures to objects to avoid color bias. Our experiments focus on wide-baseline configuration which requires more datasets. We validate the generator by testing the generated datasets with known deep-learning approaches as well as depth reconstruction algorithms in order to validate them. The validation experiments have proven successful.

Funder

ANR-ReVeRY projet

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Graphics and Computer-Aided Design,Computer Vision and Pattern Recognition,Radiology, Nuclear Medicine and imaging

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3