MRI-Based Effective Ensemble Frameworks for Predicting Human Brain Tumor

Author:

Khan Farhana1,Ayoub Shahnawaz1ORCID,Gulzar Yonis2ORCID,Majid Muneer1,Reegu Faheem Ahmad3ORCID,Mir Mohammad Shuaib2ORCID,Soomro Arjumand Bano24ORCID,Elwasila Osman2

Affiliation:

1. Glocal School of Science and Technology, Glocal University, Delhi-Yamunotri Marg (State Highway 57), Mirzapur Pole 247121, India

2. Department of Management Information Systems, College of Business Administration, King Faisal University, Al-Ahsa 31982, Saudi Arabia

3. College of Computer Science and Information Technology, Jazan University, Jazan 45142, Saudi Arabia

4. Department of Software Engineering, Faculty of Engineering and Technology, University of Sindh, Jamshoro 76080, Pakistan

Abstract

The diagnosis of brain tumors at an early stage is an exigent task for radiologists. Untreated patients rarely survive more than six months. It is a potential cause of mortality that can occur very quickly. Because of this, the early and effective diagnosis of brain tumors requires the use of an automated method. This study aims at the early detection of brain tumors using brain magnetic resonance imaging (MRI) data and efficient learning paradigms. In visual feature extraction, convolutional neural networks (CNN) have achieved significant breakthroughs. The study involves features extraction by deep convolutional layers for the efficient classification of brain tumor victims from the normal group. The deep convolutional neural network was implemented to extract features that represent the image more comprehensively for model training. Using deep convolutional features helps to increase the precision of tumor and non-tumor patient classifications. In this paper, we experimented with five machine learnings (ML) to heighten the understanding and enhance the scope and significance of brain tumor classification. Further, we proposed an ensemble of three high-performing individual ML models, namely Extreme Gradient Boosting, Ada-Boost, and Random Forest (XG-Ada-RF), to derive binary class classification output for detecting brain tumors in images. The proposed voting classifier, along with convoluted features, produced results that showed the highest accuracy of 95.9% for tumor and 94.9% for normal. Compared to individual methods, the proposed ensemble approach demonstrated improved accuracy and outperformed the individual methods.

Funder

Deanship of Scientific Research, Vice Presidency for Graduate Studies and Scientific Research, King Faisal University, Saudi Arabia

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Graphics and Computer-Aided Design,Computer Vision and Pattern Recognition,Radiology, Nuclear Medicine and imaging

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3