Document Liveness Challenge Dataset (DLC-2021)

Author:

Polevoy Dmitry V.ORCID,Sigareva Irina V.ORCID,Ershova Daria M.ORCID,Arlazarov Vladimir V.ORCID,Nikolaev Dmitry P.ORCID,Ming ZuhengORCID,Luqman Muhammad MuzzamilORCID,Burie Jean-ChristopheORCID

Abstract

Various government and commercial services, including, but not limited to, e-government, fintech, banking, and sharing economy services, widely use smartphones to simplify service access and user authorization. Many organizations involved in these areas use identity document analysis systems in order to improve user personal-data-input processes. The tasks of such systems are not only ID document data recognition and extraction but also fraud prevention by detecting document forgery or by checking whether the document is genuine. Modern systems of this kind are often expected to operate in unconstrained environments. A significant amount of research has been published on the topic of mobile ID document analysis, but the main difficulty for such research is the lack of public datasets due to the fact that the subject is protected by security requirements. In this paper, we present the DLC-2021 dataset, which consists of 1424 video clips captured in a wide range of real-world conditions, focused on tasks relating to ID document forensics. The novelty of the dataset is that it contains shots from video with color laminated mock ID documents, color unlaminated copies, grayscale unlaminated copies, and screen recaptures of the documents. The proposed dataset complies with the GDPR because it contains images of synthetic IDs with generated owner photos and artificial personal information. For the presented dataset, benchmark baselines are provided for tasks such as screen recapture detection and glare detection. The data presented are openly available in Zenodo.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Graphics and Computer-Aided Design,Computer Vision and Pattern Recognition,Radiology, Nuclear Medicine and imaging

Reference42 articles.

1. Smart IDReader: Document recognition in video stream;Bulatov;Proceedings of the 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR),2017

2. An Automatic Reader of Identity Documents;Attivissimo;Proceedings of the 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC),2019

3. Identity Document and banknote security forensics: A survey;Centeno;arXiv,2019

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3