Refracted Gravity Solutions from Small to Large Scales

Author:

Cesare Valentina1ORCID

Affiliation:

1. National Institute for Astrophysics, Astrophysical Observatory of Catania, Via Santa Sofia 78, 95123 Catania, CT, Italy

Abstract

If visible matter alone is present in the Universe, general relativity (GR) and its Newtonian weak field limit (WFL) cannot explain several pieces of evidence, from the largest to the smallest scales. The most investigated solution is the cosmological model Λ cold dark matter (ΛCDM), where GR is valid and two dark components are introduced, dark energy (DE) and dark matter (DM), to explain the ∼70% and ∼25% of the mass–energy budget of the Universe, respectively. An alternative approach is provided by modified gravity theories, where a departure of the gravity law from ΛCDM is assumed, and no dark components are included. This work presents refracted gravity (RG), a modified theory of gravity formulated in a classical way where the presence of DM is mimicked by a gravitational permittivity ϵ(ρ) monotonically increasing with the local mass density ρ, which causes the field lines to be refracted in small density environments. Specifically, the flatter the system the stronger the refraction effect and thus, the larger the mass discrepancy if interpreted in Newtonian gravity. RG presented several encouraging results in modelling the dynamics of disk and elliptical galaxies and the temperature profiles of the hot X-ray emitting gas in galaxy clusters and a covariant extension of the theory seems to be promising.

Funder

Fondazione ICSC Centro Nazionale di Ricerca in High Performance Computing, Big Data e Quantum Computing

Publisher

MDPI AG

Reference154 articles.

1. Planck Collaboration, Aghanim, N., Akrami, Y., Ashdown, M., Aumont, J., Baccigalupi, C., Ballardini, M., Banday, A.J., Barreiro, R.B., and Bartolo, N. (2020). Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys., 641, A6.

2. The evolution of large-scale structure in a universe dominated by cold dark matter;Davis;Astrophys. J.,1985

3. The large-scale structure of the Universe;Springel;Nature,2006

4. Chandra Observation of the Most Interesting Cluster in the Universe;Wilson;Proceedings of the The X-ray Universe 2005,2006

5. A Direct Empirical Proof of the Existence of Dark Matter;Clowe;Astrophys. J.,2006

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3