Abstract
This paper reports the results of a study concerned with air–water and air–oil two-phase flow in channels packed with open-cell metal foams. The research was conducted in horizontal channel with an internal diameter of 0.02 m and length of 2.61 m. The analysis applied three metal foams with pore density 20, 30, and 40 PPI and porosity typical for industrial applications, changing in the range of 92–94%. The experimental data were used to develop a new method for predicting void fraction in two-phase gas–liquid flow in channels packed with metal foams. A new gas void fraction calculating method based on drift-flux model was developed. This model gives a correct representation of changes in the gas void fraction value and good prediction accuracy. The average relative error in calculating the air void fraction in two-phase flow is less than 13%, and 86% of experimental points is characterized by an error less than 20%.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)