Research on Broadband Matching Method for Capacitive Micromachined Ultrasonic Transducers Based on PDMS/TiO2 Particles

Author:

Gao Bizhen,Zhang Sai,He ChangdeORCID,Wang Renxin,Yang Yuhua,Jia Licheng,Wang Zhihao,Wu Yang,Hu Shumin,Zhang WendongORCID

Abstract

The study of impedance matching between a transducer and its working medium is an important part of acoustic transducer design. The traditional quarter wavelength matching (Q-matching) scheme is not suitable for broadband capacitive micromachined ultrasonic transducers. To mitigate this issue, a 0–3 composite broadband matching layer based on polydimethylsiloxane (PDMS) substrate/TiO2 particles is designed to achieve electrical insulation and efficient acoustic energy transfer of underwater capacitive micromachined ultrasonic transducer (CMUT) devices. In this work, the coherent potential approximation model is used to analyze the properties of 0–3 composite materials. Samples are prepared for performance testing to determine the proportion of TiO2 particles that enable the 0–3 composite materials to have the same longitudinal acoustic impedance as water. The CMUT device is packaged by a spin coating and pouring process, and its performance tests are carried out. The experimental results show that the central frequency of the transducer remains at 1.74 MHz, the −6 dB fractional bandwidth increases from 97.3% to 100.3%, the 3 dB directional main beam width increases from 8.3° to 10.3°, the side lobes decrease significantly, and the device has good reception sensitivity. These values imply that the 0–3 composite material has good matching performance, and this matching scheme has the advantages of high efficiency and wide bandwidth. This broadband matching method endows CMUTs with great advantages in underwater detection systems, and it facilitates underwater ultrasonic imaging of CMUT.

Funder

National Natural Science Foundation of China

State key Laboratory of Dynamic Measurement Technology, North University of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3