Research on Broadband Matching Method for Capacitive Micromachined Ultrasonic Transducers Based on PDMS/TiO2 Particles
-
Published:2022-10-26
Issue:11
Volume:13
Page:1827
-
ISSN:2072-666X
-
Container-title:Micromachines
-
language:en
-
Short-container-title:Micromachines
Author:
Gao Bizhen, Zhang Sai, He ChangdeORCID, Wang Renxin, Yang Yuhua, Jia Licheng, Wang Zhihao, Wu Yang, Hu Shumin, Zhang WendongORCID
Abstract
The study of impedance matching between a transducer and its working medium is an important part of acoustic transducer design. The traditional quarter wavelength matching (Q-matching) scheme is not suitable for broadband capacitive micromachined ultrasonic transducers. To mitigate this issue, a 0–3 composite broadband matching layer based on polydimethylsiloxane (PDMS) substrate/TiO2 particles is designed to achieve electrical insulation and efficient acoustic energy transfer of underwater capacitive micromachined ultrasonic transducer (CMUT) devices. In this work, the coherent potential approximation model is used to analyze the properties of 0–3 composite materials. Samples are prepared for performance testing to determine the proportion of TiO2 particles that enable the 0–3 composite materials to have the same longitudinal acoustic impedance as water. The CMUT device is packaged by a spin coating and pouring process, and its performance tests are carried out. The experimental results show that the central frequency of the transducer remains at 1.74 MHz, the −6 dB fractional bandwidth increases from 97.3% to 100.3%, the 3 dB directional main beam width increases from 8.3° to 10.3°, the side lobes decrease significantly, and the device has good reception sensitivity. These values imply that the 0–3 composite material has good matching performance, and this matching scheme has the advantages of high efficiency and wide bandwidth. This broadband matching method endows CMUTs with great advantages in underwater detection systems, and it facilitates underwater ultrasonic imaging of CMUT.
Funder
National Natural Science Foundation of China State key Laboratory of Dynamic Measurement Technology, North University of China
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering
Reference39 articles.
1. Greenleaf, J.F., Johnson, S.A., Lee, S.L., Herman, G.T., and Wood, E.H. Algebraic reconstruction of spatial distributions of acoustic velocities in tissue from their time of flight profiles. Acoustical Holography, 1974. 2. Johnson, S.A., Abbott, T., Bell, R., Berggren, M., Borup, D., Robinson, D., Wiskin, J., Olsen, S., and Hanover, B. Non-Invasive Breast Tissue Characterization Using Ultrasound Speed and Attenuation. Acoustical Imaging, 2007. 3. Liu, C., Xue, C.Y., Zhang, B.Z., Zhang, G.J., and He, C.D. The Application of an Ultrasound Tomography Algorithm in a Novel Ring 3D Ultrasound Imaging System. Sensors, 2018. 18. 4. Ultrasound computed tomography for material inspection: Principles, design and applications;Khairi;Measurement,2019 5. Ruiter, N.V., Gbel, G., Berger, L., Zapf, M., and Gemmeke, H. Realization of an optimized 3D USCT. Proceedings of the SPIE—The International Society for Optical Engineering, 2011.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|