Configuration of the Deep Neural Network Hyperparameters for the Hypsometric Modeling of the Guazuma crinita Mart. in the Peruvian Amazon

Author:

Casas Gianmarco GoycocheaORCID,Gonzáles Duberlí Geomar EleraORCID,Villanueva Juan Rodrigo BasellyORCID,Fardin Leonardo PereiraORCID,Leite Hélio Garcia

Abstract

The Guazuma crinita Mart. is a dominant species of great economic importance for the inhabitants of the Peruvian Amazon, standing out for its rapid growth and being harvested at an early age. Understanding its vertical growth is a challenge that researchers have continued to study using different hypsometric modeling techniques. Currently, machine learning techniques, especially artificial neural networks, have revolutionized modeling for forest management, obtaining more accurate predictions; it is because we understand that it is of the utmost importance to adapt, evaluate and apply these methods in this species for large areas. The objective of this study was to build and evaluate the efficiency of the use of a deep neural network for the prediction of the total height of Guazuma crinita Mart. from a large-scale continuous forest inventory. To do this, we explore different configurations of the hidden layer hyperparameters and define the variables according to the function HT = f(x) where HT is the total height as the output variable and x is the input variable(s). Under this criterion, we established three HT relationships: based on the diameter at breast height (DBH), (i) HT = f(DBH); based on DBH and Age, (ii) HT = f(DBH, Age) and based on DBH, Age and Agroclimatic variables, (iii) HT = f(DBH, Age, Agroclimatology), respectively. In total, 24 different configuration models were established for each function, concluding that the deep artificial neural network technique presents a satisfactory performance for the predictions of the total height of Guazuma crinita Mart. for modeling large areas, being the function based on DBH, Age and agroclimatic variables, with a performance validation of RMSE = 0.70, MAE = 0.50, bias% = −0.09 and VAR = 0.49, showed better accuracy than the others.

Funder

Fundação de Amparo à Pesquisa do Estado de Minas Gerais

Publisher

MDPI AG

Subject

Forestry

Reference52 articles.

1. Evaluación Económica de Parcelas de Regeneración Natural y Plantaciones de Bolaina Blanca, Guazuma crinita, En El Departamento de Ucayali;Álvarez Gómez,2009

2. Producción y Comercialización de Bolaina (Guazuma Crinita), Una Especie Amazónica de Rápido Crecimiento: Un Llamado a la Adopción de un Marco de Políticas que Apoye los Medios de Vida;Putzel,2013

3. Árboles Útiles de La Amazonía Peruana, Manual de Identificación Ecológica y Propagación de Las Especies;Reynel,2003

4. Preliminary Evidence for Domestication Effects on the Genetic Diversity of Guazuma crinita in the Peruvian Amazon

5. SERFOR (Servicio Nacional Forestal y de Fauna Silvestre) SNIFFS—Componente Estadístico http://sniffs.serfor.gob.pe/estadistica/es/tableros/registros-nacionales/plantaciones

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3