Abstract
Short-statured plants revolutionized agriculture during the 1960s due to their ability to resist lodging, increased their response to fertilizers, and improved partitioning of assimilates which led to yield gains. Of more than 21 reduced-height (Rht) genes reported in wheat, only three—Rht-B1b, Rht-D1b, and Rht8—were extensively used in wheat breeding programs. The remaining reduced height mutants have not been utilized in breeding programs due to the lack of characterization. In the present study, we determined the inheritance of Rht18 and developed a genetic linkage map of the region containing Rht18. The height distribution of the F2 population was skewed towards the mutant parent, indicating that the dwarf allele (Rht18) is semi-dominant over the tall allele (rht18). Rht18 was mapped on chromosome 6A between markers barc146 and cfd190 with a genetic distance of 26.2 and 17.3 cM, respectively. In addition to plant height, agronomically important traits, like awns and tiller numbers, were also studied in the bi-parental population. Although the average tiller number was very similar in both parents, the F2 population displayed a normal distribution for tiller number with the majority of plants having phenotype similar to the parents. Transgressive segregation was observed for plant height and tiller number in F2 population. This study enabled us to select a semi-dwarf line with superior agronomic characteristics that could be utilized in a breeding program. The identification of SSRs associated with Rht18 may improve breeders’ effectiveness in selecting desired semi-dwarf lines for developing new wheat cultivars.
Funder
National Science Foundation
Subject
Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献